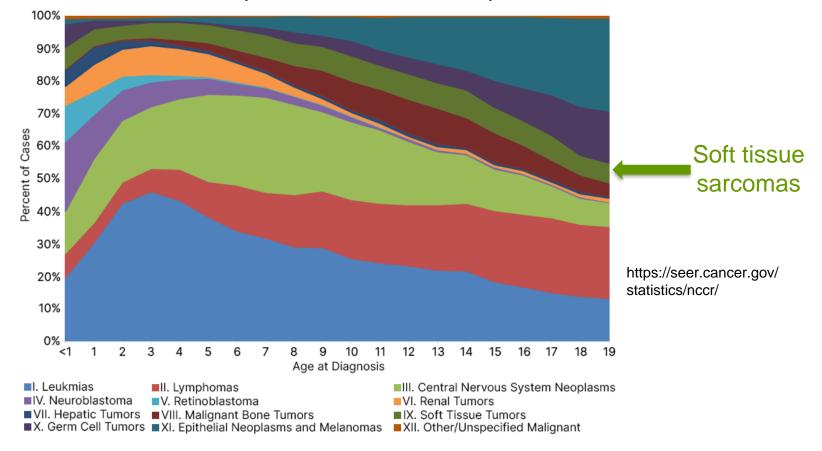
Integrating Genomics into the Pediatric Oncology Clinic


Jack Shern MD

Lasker Clinical Research Scholar

Pediatric Oncology Branch

Soft tissue sarcomas represent ~7% of all pediatric cancer cases

Two strategies for making progress for patients with rare pediatric tumors

- 1. Develop disease specific therapies; new therapeutic strategies
- Improve the accuracy of diagnosis; disease classification/staging; and disease detection
 - Genomic risk stratification of rhabdomyosarcoma
 - Use of cell free DNA in early cancer detection for patients with Neurofibromatosis Type 1 (NF1)

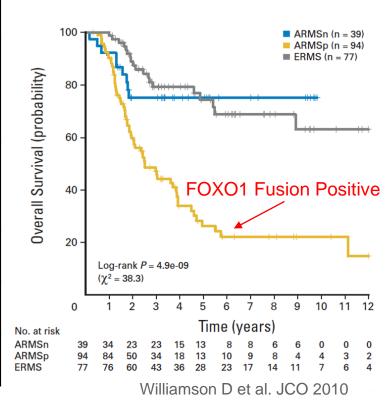
Rhabdomyosarcoma the most common soft tissue sarcoma of childhood

Finn Schafran

week													
1	2	3	4	5	6	7	8	9	10	11	12	13	15
V	V	V	V	V	V	V	V	V	V	V	V	V	
A			Α									Α	Evaluation
С			С			С			С			С	
			Radia	Radiation Therapy →									

Week													
16	17	18	19	20	21	22	23	24	25	26	27	28	30
V			V	V	V	V	V	V	V			V	
A			A			A			A			A	Evaluation
С			С			С			С			С	1

V	Veek												
	31	32	33	34	35	36	37	38	39	40	41	42	43
	V	V	V	V	V	V	V			V			End of Thorony
	Α			A			A			A			End of Therapy Evaluation
Г	С			С			С			С			Lvardadon


	Drug	Age	Dose					
		< 1 year	0.025 mg/kg IV x 1					
V	VinCRIStine	≥ 1 year and < 3 years	0.05 mg/kg IV x 1 (maximum dose 2 mg)					
		≥ 3 years	1.5 mg/m ² IV x 1 (maximum dose 2 mg)					
A	Dactinomycin	< 1 year	0.025 mg/kg IV x 1					
_ A	Dactinomyciii	≥ 1 year	0.045 mg/kg (maximum dose 2.5 mg) IV X 1					
	Cyclophocphomido	< 3 years	40 mg/kg IV X 1					
'	C Cyclophosphamide ≥ 3 years 1200 mg/m² IV X 1							
Mesna aı	Mesna and fluids will be used with Cyclophosphamide							
Neutroph	nil growth factor will be	e used in VAC and VC cycl	les. See Section 8 for specific directions.					

If there is an age change during treatment, use the new appropriate age dosing in the next cycle

Current rhabdomyosarcoma risk stratification is imprecise

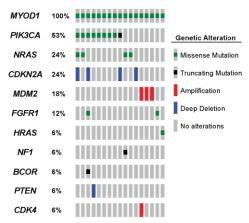
Risk Group	FOXO1 Fusion Status	Stage	Group	Proportion of patients	EFS
Low Risk	Fusion Negative	1	I, II, III (orbit only)	32%	70-95%
	Fusion Negative	2	Ι, ΙΙ		70-95%
		1	III (non-orbit)	27%	
	F	2,3	III		
Intermediate	Fusion	3	1, 11		73%
Risk	Negative	4	IV (age <10 years)		
	Fusion Positive	1,2,3	1, 11, 111	25%	65%
High Risk	Fusion Positive	4	IV	8%	15%
	Fusion Negative	4	IV (age ≥10 years)	8%	35%

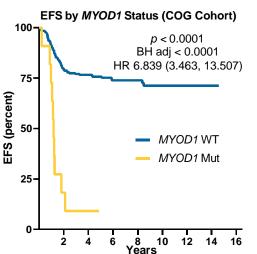
An International collaboration to profile rhabdomyosarcoma

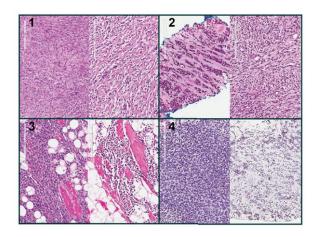
CHILDREN'S ONCOLOGY GROUP

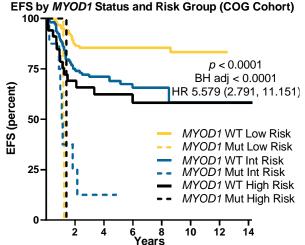
TABLE 1.	Clinical	Characteristics	of	Included	Patients

Characteristic	AII (N = 641)	COG (n = 344)	UK (n = 297)
Sex, No. (%)			
Male	421 (66)	232 (66)	189 (66)
Female	220 (34)	112 (34)	108 (34)
Age at presentation, years			
Median	5.9	6.4	5.3
Range	0.02-37.8	0.02-37.8	0.1-23.1
Tumor histology, No. (%)			
Alveolar	151 (24)	68 (20)	83 (28)
Embryonal	447 (70)	254 (74)	187 (63)
Mixed alveolar and embryonal	3 (< 1)	2 (1)	1 (< 1)
Spindle cell RMS	18 (3)	18 (5)	7 (2)
NOS	20 (3)	2 (1)	18 (6)
Pleomorphic	2 (< 1)	0 (< 1)	1 (< 1)

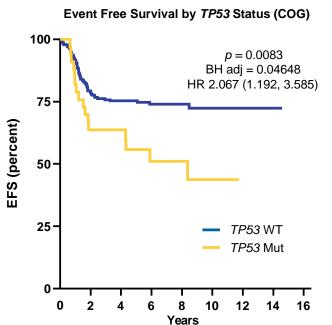

Gene	No. of Cases	Age (median), years	Low (n = 220)	Intermediate (n = 299)	High (n = 115)	Bladder/prostate (n = 5	Extremity (n = 92)	Female GU (n = 18)	Head and Neck (n = 57)	Orbital (n = 45)	Others $(n = 21)$	Parameningeal (n = 12	Paratesticular (n = 125)	Peritoneum/trunk (n =
NRAS	88	6.4	25	9	5	16	2	22	26	20	5	9	22	9
BCOR	85	6.7	20	11	7	12	3	11	16	27	10	12	18	14
NF1	80	5.1	11	14	10	22	3	11	7	13	19	14	13	16
TP53	74	4.2	11	12	11	8	16	17	19	18	10	9	2	16
FGFR4	65	4.7	11	11	6	16		11	9	18	5	17	6	12
KRAS	45	4.6	9	6	5	4	1		7	2		8	11	13
HRAS	44	2.8	8	7	4	14	3	11	2	2	10	2	12	9
CTNNB1	32	4.3	6	5	3	10		6	4	4		2	7	11
PIK3CA	28	5.1	3	5	4	2	2	6	5	2		9	2	6
MDM2	27	6.6	5	4	3	4	8	6	2	2		4	6	3
CDKN2A	23	7.6	3	4	4		3		5	7		6		6
FBXW7	18	6.7	6	1	3	2			2	2		1	8	4
MYOD1	17	10.8	2	4	2		1		7			9		
CDK4	17	11.3		2	10		12		2			2		3
MYCN	13	10.5		2	5		4		2		10	2		4
DICER1	12	6.0	2	2	2			33			10			4
ARID1A	11	8.2	2	2		2			2	4		3	1	2

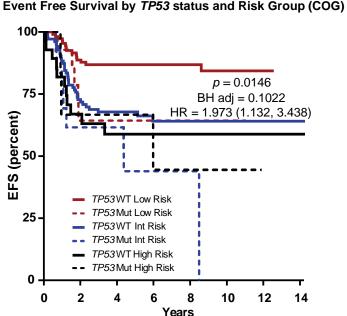

1% 5% 10% Percentage of cases with a mutation in that group



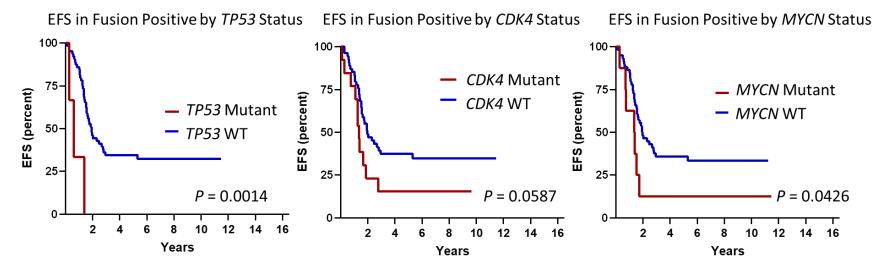

MYOD1 L122R mutant rhabdomyosarcoma

- 3% of all fusion negative cases
- Older age of presentation
- Histopathology is not specific
- Cases can present as low, intermediate or high risk





TP53 mutations are a genomic marker of more aggressive disease in fusion negative rhabdomyosarcoma


- TP53 mutations occur in 13% of all fusion negative cases
- Mutations are frequently found in tumors with a second oncogenic mutation
- ~40% of fusion negative cases that occur on the extremity are TP53 mutant or MDM2 amplified

Shern et al., JCO 2021

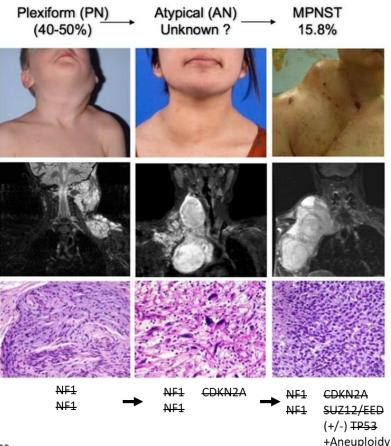
TP53 mutation or focal amplification of CDK4 or MYCN are genomic markers of worse outcome in fusion positive cases

Shern et al., JCO 2021

Refining rhabdomyosarcoma risk stratification

TABLE A4. Proposed Risk Stratification With the Incorporation of Genetic Markers

Risk Stratification	FFS, %	Fusion Status	Stage	Group	Anatomy	Metastatic Sites	Genetic Marker
Low	> 85						
		Negative	l or II	l or II			
		Negative	-	III	Orbit only		
Intermediate	60-75						
		Negative	Any	III	Nonorbit		
		Negative	III	l or II			
		Negative	IV	IV		1	
		Negative	Any low risk				TP53 mutant
		Positive	I, II, or III	I, II, or III			TP53 WT
High	< 40						
		Negative	IV	IV		> 1	
		Negative	Any intermed	diate risk			TP53 mutant
		Positive	IV	IV			TP53 WT
Ultrahigh	< 20						
		Negative	Any	Any		Any	MYOD1 mutant
		Positive	Any	Any		Any	TP53 mutant



Molecular profiling of Rhabdomyosarcoma: from crawling to running

- New opportunities to study these results in a prospective national trials
 - 1. New High-Risk Trial (ARST2031) Wendy Allen-Rhoades, MD (Mayo)
 - Prospectively testing the prognostic value of TP53, MYOD1, CDK4 and MYCN
 - 2. New Low-Risk Trial (ARST2032) Josephine HaDuong, MD (Children's Orange County)
 - Potential for upstaging of MYOD1 and TP53 mutations
 - Actively performing comprehensive genomic characterization of the current Intermediate Risk Study COG ARST1431 – Brian Crompton, MD (Dana Farber)
- Childhood Cancer Data Initiative Molecular Characterization Protocol
 - 1. Germline/tumor exome, Methylation Array, and RNA based Fusion panel
 - CLIA results returned with 2 weeks to the treating team
 - Detailed correlative clinical data will be collected on COG Project: EveryChild

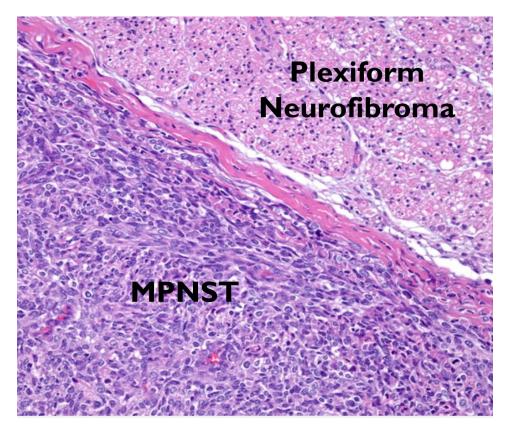
Malignant Peripheral Nerve Sheath Tumors (MPNST)

- ~50% of cases occur in patients with Neurofibromatosis Type 1 (NF1)
- NF1 patients have an 8-13% lifetime risk of developing MPNST
- Chemotherapy and radiotherapy resistant

	Type of Tumor (Number evaluated)	Median number of CNVs per tumor (Range)
	PN (22)	9 (3 - 104)
>	AN (10)	23 (5 - 49)
U	MPNST (4)	438 (294 - 866)

Pemov et al., 2019

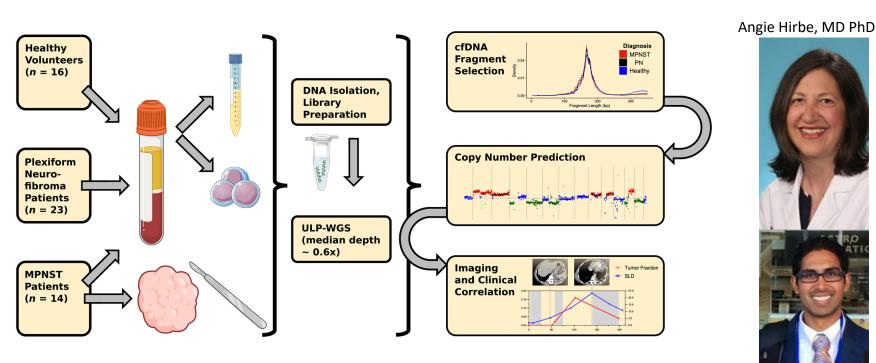
Early detection of Malignant Peripheral Nerve Sheath Tumor


Imaging:

- Patients present with multiple PN, Whole Body-MRI is research only
- PET without standardized guidelines
- Anatomic MRI 90% sensitive, 61% specific¹

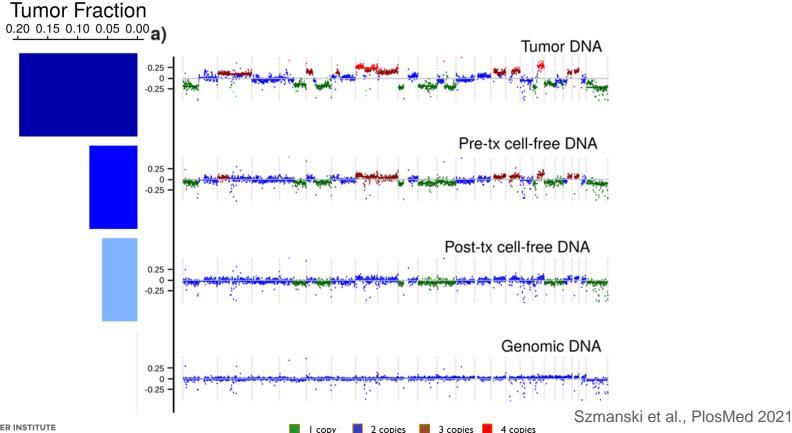
Tissue Biopsies:

- Invasive with potential morbidity
- High Positive Predictive Value, low Negative Predictive Value due to tumor size and intratumoral heterogeneity

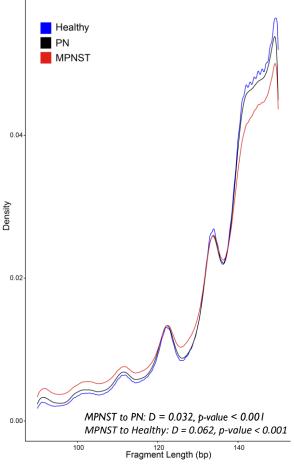

Hypothesis: Changes in <u>plasma</u>
<u>cell-free DNA</u> can accurately
distinguish Plexiform from MPNST.

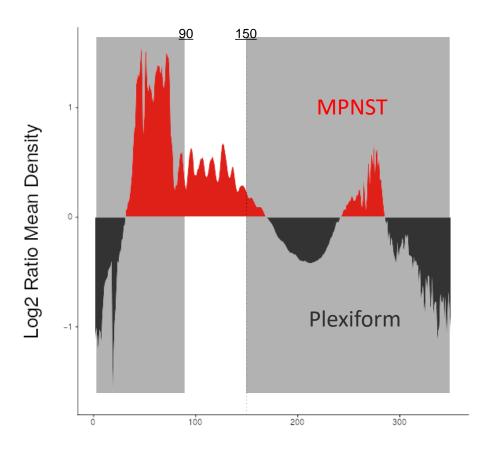
¹Wasa et al., 2010

Cell free DNA to detect NF1 nerve tumors: Study Design



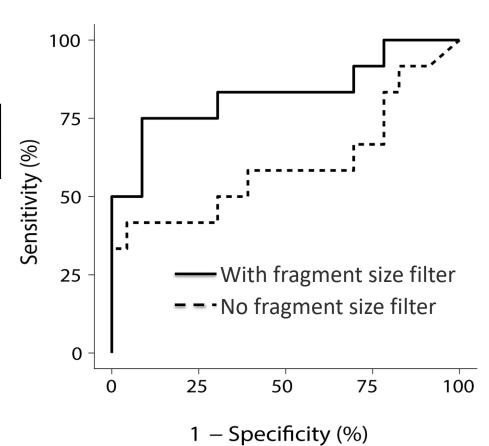
Szmanski et al., PlosMed 2021


Aadel Chaudhuri, MD PhD



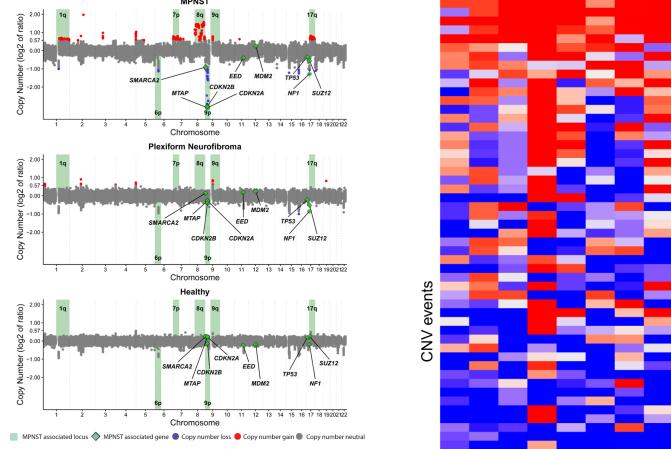
Copy Number Alterations and the Calculated Tumor Fraction correlate well with tumor sequencing

Shorter cell free DNA fragments were enriched for in MPNST samples



Tumor Fraction Distinguishes Plexiform Neurofibroma from PreTreatment MPNST Samples

<u>Condition</u>	<u>AUC</u>	Sensitivity	Specificity	<u>Accuracy</u>
Pre-treatment	0.83	75%	91%	86%
Serial analysis	0.89	83%	91%	89%


Diagnostic Modality	Sensitivity	Specificity
Anatomic MRI ¹	90%	61%
Image-guided biopsy ²	73%	100%
cfDNA ULP-WGS (current study), pre-treatment	75%	91%
cfDNA ULP-WGS (current study), serial analysis	83%	91%

¹Wasa et al., 2010

²Graham et al., 2019

Chromosome 8 gain is an early genomic event in transformation to MPNST

17q gain

1q gain 14q gain 6p loss 19q gain 12q gain 2q gain 15q gain

1p gain

9q gain

2p gain 5q loss 7q gain

13q loss

20q gain

16p gain 7p gain

3q loss 11q loss 5p gain 12p gain 10q loss 21q loss

16q gain

1q loss 8p loss

19p loss 4q gain 4q loss 17p loss

19q loss

17g loss

3q gain 11p gain

6q loss 1p loss

19p gain

12g loss

10p loss

11q gain

22q gain

3p loss

5q gain

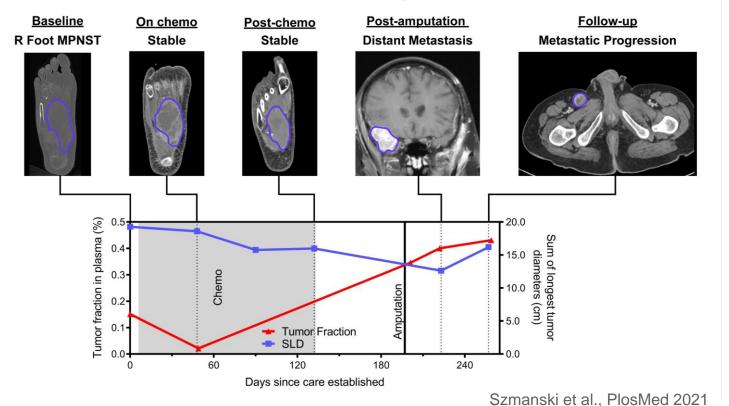
6p gain 9p gain 18q loss

12p loss

14a loss

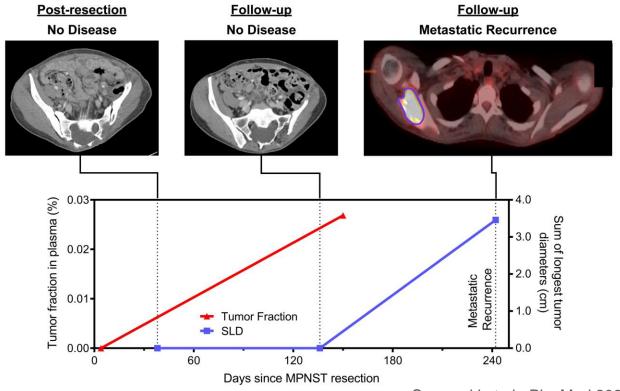
6q gain 9g loss Percentage of cells

100

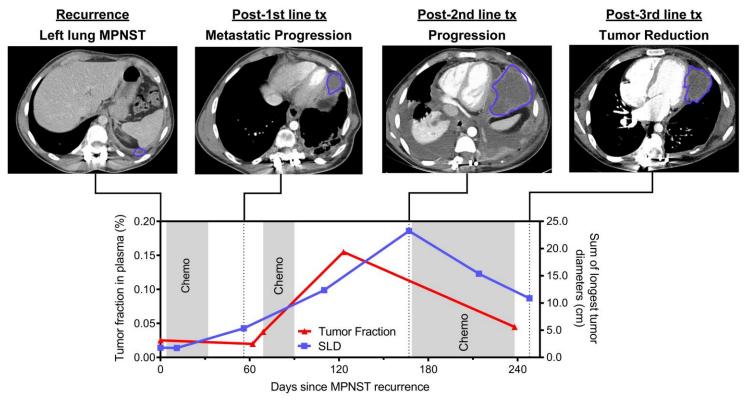

80

60

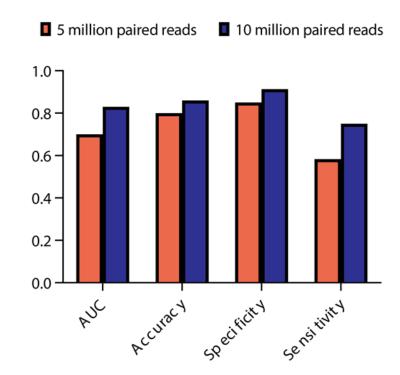
40


20

Increases in cfDNA Tumor Fraction Precede Radiographic Metastatic Progression



Increases in cfDNA Tumor Fraction Precede Radiographic Metastatic Progression


Dynamic Changes in Tumor fraction correlate with response

Szmanski et al., PlosMed 2021

Cell free DNA could be a powerful tool in the pediatric oncology clinic

- Early cancer detection
 - Particularly useful in the cancer predisposition syndromes
- Minimal Residual Disease
- 3. Response to therapy
 - Deeper understanding of tumor clonal evolution in response to therapy

	AUC	Accuracy	Specificity	Sensitivity
5 million paired reads	0.700	0.800	0.854	0.583
10 million paired reads	0.830	0.860	0.913	0.750

Collaborators

NCI, CCR, Pediatric Oncology Branch

Taylor Sundby
Carly Sayers
Xiyuan Zhang
Bega Murray
Haiyen Lei
Brigitte C. Widemann
Andrea Gross
NF1 Clinical Team

Washington University

Angie Hirbe
Divya Srihari
Aadel Chaudhuri
Paul Jones
Jeff Syzmanski
Noah Earland
Peter K. Harris
Matthew B Spraker
Li Ding

NCI, CCR, Genetics Branch Javed Khan

Childrens Oncology Group

Corinne Linardic Erin Rudinski Mike Arnold Steve Skapek Dave Hall Don Barkauskus Doug Hawkins

Institute of Cancer Research UK

Janet Shipley Anna Kelsey Rebecca Brown Julia Chisholm Joanna Selfie

NCI DCEG

Kristie Jones Belynda Hicks

Peyton Arens

ccr.cancer.gov